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Data reduction analyses such as principal components and exploratory factor analyses identify re-
lationships within a set of potentially correlated variables, and cluster correlated variables into a smaller
overall quantity of groupings. Because of their relative objectivity, these analyses are popular throughout
the animal literature to study a wide variety of topics. Numerous authors have highlighted ‘best practice’
guidelines for component/factor ‘extraction’, i.e. determining how many components/factors to extract
from a data reduction analysis, because this can greatly impact the interpretation, comparability and
replicability of one's results. Statisticians agree that Kaiser's criterion, i.e. extracting components/factors
with eigenvectors >1.0, should never be used, yet, within the animal literature, a considerable number of
authors still use it, even as recently as 2018 and across a wide range of taxa (e.g. insects, birds, fish,
mammals) and topics (e.g. personality, cognition, health, morphology, reproduction). It is therefore clear
that further awareness is needed to target the animal sciences to ensure that results optimize structural
stability and, thus, comparability and reproducibility. In this commentary, we first clarify the distinction
between principal components and exploratory factor analyses in terms of analysing simple versus
complex structures, and how this relates to component/factor extraction. Second, we highlight empirical
evidence from simulation studies to explain why certain extraction methods are more reliable than
others, including why automated methods are better, and why Kaiser's criterion is inappropriate and
should therefore never be used. Third, we provide recommendations on what to do if multiple auto-
mated extraction methods ‘disagree’ which can arise when dealing with complex structures. Finally, we
explain how to perform and interpret more robust and automated extraction tests using R.
© 2019 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Data reduction analyses such as principal components analysis
(PCA) and exploratory factor analysis (EFA) identify relationships
within a set of potentially correlated variables, and cluster corre-
lated variables into fewer groupings called ‘components’ (in PCA) or
‘factors’ (in EFA) (Field, 2009; Gorsuch, 1983). Because they provide
researchers with a relatively objective approach to categorizing
different sets of data (e.g. questionnaire ratings, task performances
or rates of behaviour among individuals), such analyses are
commonly used to study a wide variety of theoretical and applied
topics on animals (e.g. genetics, health, sociality, personality and
cognition).
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Numerous authors within the statistical literature have high-
lighted ‘best practice’ guidelines for component/factor ‘extraction’,
i.e. determining howmany components/factors should be extracted
from a data reduction analysis, because this can greatly impact the
interpretation, comparability and replicability of structures derived
from these analyses (e.g. Todorov, Fournier, & Gerber, 2018; Zwick
& Velicer, 1986). Most notably, statisticians largely agree that one
extraction method, Kaiser's criterion, should never be used because
it increases the risk of overextraction compared to more automated
tests, which in turn can lead to instability in the structures derived
from data reduction analyses, and thus affect the overall interpre-
tation of one's results. In terms of animal research, for example,
Stevens, De Groot, and Staes (2015) subjected bonobo, Pan paniscus,
social relationship data to a data reduction analysis and compared
structures derived using Kaiser's criterion versus a more robust and
automated method called parallel analysis (discussed below in
evier Ltd. All rights reserved.
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further detail). These authors found that the latter approach led to a
more stable and conservative structure (two rather than three
components), thereby changing the interpretation of their results
entirely.

There are multiple extraction methods, mostly but not exclu-
sively quantitative, that researchers can use as more robust alter-
natives to using Kaiser's criterion to identify the quantity of
underlying latent variables, i.e. those factors that are not directly
observed but can be inferred from the data. That said, throughout
the animal literature a considerable number of authors still use
Kaiser's criterion to extract components/factors despite decades of
resolve within the statistical literature, which is probably fuelled by
the fact that it remains the ‘default’ method in common statistical
packages such as SPSS (Field, 2009). Studies using Kaiser's criterion
have been published as recently as 2018, encompassing an eclectic
range of taxa, such as insects, birds, fish, and mammals, and
covering a broad range of topics, including but not limited to per-
sonality (e.g. Martin & Reale, 2008; Menzies, Timonin, McGuire, &
Willis, 2013; Pritchard, Sheeran, Gabriel, Li, & Wagner, 2014;
Slipogor, Gunhold-de Oliveira, Tadic, Massen, & Bugnyar, 2016),
cognition (e.g. Keagy, Savard, & Borgia, 2011; Meulman & van
Schaik, 2013), morphology (e.g. Dunham, Maitner,
Razafindratsima, Simmons, & Roy, 2013; Khargharia et al., 2015;
Yakubu & Okunsebor, 2011), behavioural ecology (e.g. Adamo,
Kovalko, & Mosher, 2013; Hassrick, Crocker, & Costa, 2013; Klein,
Pasquaretta, Barron, Devaud, & Lihoreau, 2017; Nath, Singha, Deb,
Das, & Lahkar, 2015; Willems, Arseneau, Schleuning, & van
Schaik, 2015), sociality (e.g. Fraser & Bugnyar, 2010; Fraser,
Schino, & Aureli, 2008; Koski, De Vries, Van de Kraats, & Sterck,
2012; McFarland & Majolo, 2011; Moreno, Highfill, & Kuczaj,
2017; Rebecchini, Schaffner, & Aureli, 2011), welfare (e.g. Ferreira
et al., 2016), health and conservation (e.g. Morton, Todd, Lee, &
Masi, 2013; de Medeiros Filho, de Carvalho-Neto, Garcia, et al.,
2018), reproduction (e.g. Venturini et al., 2013), life history (e.g.
Poinapen et al., 2017), acoustics and communication (Finger,
Bastian, & Jacobs, 2017) and inbreeding (e.g. Lawrence et al.,
2017). It is therefore clear that further awareness is needed to
ensure that researchers of animal behaviour are reporting results
that optimize structural stability and, thus, comparability and
reproducibility of those results by making careful decisions about
component/factor extraction.

In this commentary, we first clarify the distinction between
principal components and exploratory factor analyses in terms of
analysing simple versus complex structures, and how this relates to
component/factor extraction. Second, we highlight recent empir-
ical evidence from simulation studies to explain why certain
extraction methods are more reliable than others, including why
automated methods are better, and why Kaiser's criterion is inap-
propriate and should never be used. Third, we provide recom-
mendations on what to do if multiple automated extraction
methods ‘disagree’ which can arise when dealing with complex
structures. Finally, we explain how to perform and interpret more
robust and automated extraction tests in R.

PCA OR EFA, SIMPLE OR COMPLEX STRUCTURE?

Deciding which extraction methods are appropriate in a data
reduction analysis depends on whether PCA or EFA is used, and
whether the underlying structure of one's solution is simple versus
complex. PCA and EFA are often applied interchangeably, but the
theoretical foundations of the two methods are different. For
instance, PCA attempts to account for the total variance (Velicer,
1976), but unlike PCA, EFA does not assume that variables have
beenmeasuredwithout error (Brown, 2009). PCA is also a pure data
reduction technique, which generates parsimonious summary
variables that are linear combinations of the observed variables
(Velicer, 1976). As there is no theory associated with this approach,
there is technically no ‘true’ number of components that a
researcher can extract. On the other hand, EFA is premised on
having a theoretical model or models, in which latent variables
cause the observed variables. This type of analysis fits a model
using the correlation matrix of the observed data to account for
common variance, i.e. the variance in a variable that is shared with
other variables (Costello & Osborne, 2005). These are just a handful
of many differences between PCA and EFA, and so for interested
readers, we recommend Brown (2009) and Yong and Pearce (2013)
for beginners, and Gorsuch (1983) and Velicer and Jackson (1990)
for more experienced researchers.

Historically, researchers have used PCA and EFA interchangeably
for data reduction in animal behaviour research without issue
because the results are very often the same. However, there is no
guarantee of this, and if researchers wish to search for meaningful
latent variables, then EFA should be used, and methods for iden-
tifying a meaningful number of factors should also be used
(Fabrigar, Wegener, MacCallum, & Strahan, 1999). In the context of
some studies, like those examining social relationship structure,
the goal has been to identify underlying latent variables, which
implies that researchers are theoretically justified in using EFA. As
such, PCA should generally not be used. For this reason, we refer
only to factors throughout this commentary, although when earlier
works have used PCA, we refer to their results in terms of com-
ponents. For a comparable guide to the use of PCA, we recommend
Todorov et al. (2018).

If a researcher posits a theoretical structure to their data, a
question they must also ask themselves is whether this structural
model is simple or complex. A simple model is one in which vari-
ables tend to load strongly on one factor and weakly on all others
(Revelle & Rocklin, 1979). Simple structure also implies that the
model has only one ‘level’. More complex models, i.e. those that
contain more than one level, include hierarchical models in which
one or more higher-order factors are loaded on by lower-order
factors, or bifactor models, in which a parallel factor is loaded on
by the variables independently of the main lower-order factors
(Murray & Johnson, 2013). For comparative examples of these
models in animal behaviour and cognition, we recommend Arden
and Adams (2016). If a researcher's theoretical model does not
have a single level structure, EFA should not be used and the
researcher should consider using, for example, confirmatory factor
analysis (CFA) or a structural equationmodelling (SEM) framework;
we return to CFA and SEM in a subsequent section.

EFA assumes a single level structure, but it does not assume
simple structure. If the researcher wishes to maximize the possi-
bility of simple structure, usually because simple structure is easier
to interpret, they could do this by allowing factors to correlate. This
can be accomplished by specifying what is called an ‘oblique
rotation’. Rotations refer to the relationships between factors in
space; the alternative to an oblique rotation is an orthogonal
rotation. Factors that are orthogonal in space, e.g. x- and y-axes,
have zero correlation (Jolliffe, 1986). However, there is rarely a
theoretical reason for factors to have zero correlation in animal
behaviour research and these factors are unlikely to have simple
structure. Thus, if researchers are unsure or do not have justifica-
tion, then an oblique rotation should be used (Browne, 2001).

PROS AND CONS OF DIFFERENT EXTRACTION METHODS

As we have mentioned, a critical decision one must make before
completing a data reduction analysis is howmany factors to extract.
This choice will influence how variables cluster together, thereby
affecting the final solution and, hence, researchers’ interpretation
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Figure 1. Example of scree tests on (a) clearly and (b) ambiguously factorable data
sets.
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of those results (Zwick & Velicer, 1986; Ledesma & Valero-Mora,
2007). Underextraction can result in the loss of relevant informa-
tion and distort the overall solution (Zwick & Velicer, 1986). Over-
extraction can result in some factors being unstable, making the
overall solution difficult to interpret and/or replicate (Zwick &
Velicer, 1986).

Deciding when to stop extracting factors depends on several
competing considerations. As we have briefly touched on, and
describe more fully below, there is a suite of quantitative and
qualitative tools available to assist researchers in making this de-
cision. However, researchers must also consider theory in EFA and
look to the interpretability of the factors they extract. Even if all
quantitative indicators suggest that a certain number of factors
would yield the best model, the pattern of loadings between the
latent and observed variables must be interpretable and the model
should be theoretically viable. In other words, if variables repre-
senting distinct constructs load on a single factor, and/or variables
representing the same construct load across many different factors,
then the model will be theoretically uninterpretable and of little
use (Fabrigar et al., 1999).

Kaiser's Criterion

Various cutoffs have been developed to help researchers choose
their factors, which typically involve taking into consideration the
amount of variation that is explained by each factor (called ‘eigen-
values’). As previously discussed, one problematicmethod that is still
commonly used throughout the animal literature is Kaiser's criterion,
which retains components with eigenvalues >1.0, that is, compo-
nents/factors that account for more variance than what is accounted
for by one of the original variables (Kaiser, 1960). Compared to other
extraction methods, Kaiser's criterion is only appropriate to use with
components, not factors, although researchers are not always aware
of this nuance and have used Kaiser's criterion with EFAs (Costello &
Osborne, 2005). Moreover, unlike other techniques, Kaiser's criterion
is largely arbitrary: there is little empirical reason why a component
with an eigenvalue slightly greater than 1 ought to be retained while
a component with an eigenvalue just below 1 should not (Courtney,
2013). A component with an eigenvalue less than 1 accounts for less
variance than the average observed variable, which is a reasonable
criterion for exclusion, but it is too crude. Kaiser's criterion has shown
tendencies towards overextraction and, to a lesser degree, under-
extraction (Zwick& Velicer, 1986). These biases are in part due to the
observation that the number of components retained by the criterion
reflects the number of variables included in the analysis more
strongly than any attributes of underlying latent variables (Gorsuch,
1983). Ruscio and Roche (2012) simulated data from abstract theo-
retical models with varying numbers of factors and, for each simu-
lation, tested several methods to determine how often each method
selected the ‘correct’ number of factors as defined by the theoretical
models. In these simulations, Kaiser's criterion led to a success rate of
8.77% and failed to extract the correct number of factors inmore than
90% of cases (Ruscio & Roche, 2012).

Structures with high loadings (i.e. j0.7j) and/or those with
components/factors containing four or more loadings greater than
j0.4j are typically considered robust and reproducible (e.g.
Guadagnoli& Velicer, 1988), yet studies relying on Kaiser's criterion
do not always find this, which may be due to overextraction. Thus,
simply put, no study should be using Kaiser’ criterion to analyse
their data.

Cattell's Scree Test

Another commonly used extraction method is Cattell's scree
test, which is a graphical technique that plots eigenvalues in a
simple line plot. The number of factors to extract is visually esti-
mated from the scree plot by finding the point where the line drops
and begins to level off; all components to the right of this point are
considered random ‘noise’ and should therefore be excluded
(Cattell, 1966). Within the animal literature, scree tests are often
used alongside Kaiser's criterion because, like Kaiser's criterion,
they are the ‘default’ method in common statistical packages such
as SPSS (Field, 2009).

Although scree tests are relatively simple to implement
(perhaps contributing to their common usage by researchers), they
are fundamentally subjective and, as such, can lead to spurious
solutions. When factors are simple, observed variables load highly
on one factor and there are few cross-loadings. Therefore, scree
plots work well in such cases, as shown in Fig. 1a, because the
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solution is clearly discernible. On the other hand, when factors
become more complex, scree plots open researchers to the risk of
under- or overextraction due to their subjectivity, particularly as
the line of the plot begins to asymptote, as shown in Fig. 1b (Zwick
& Velicer, 1986).

In simulations, scree tests are correct in only 41.7% of cases
(Zwick & Velicer, 1986). Thus, researchers should avoid using scree
tests by themselves or alongside Kaiser's criterion, and only use
them alongside more automated methods as a ‘tie-breaker’ if the
plot reveals a distinct and unambiguous drop in eigenvalues past a
certain component/factor (discussed in further detail below).

Automated Extraction Methods

Many alternative extraction methods have been developed that
aremore robust and automatic than Kaiser's and scree tests, andwe
strongly urge animal researchers to use them for data reduction
analyses. Popular ones include the empirical Bayesian information
criterion or empirical BIC (Schwarz, 1978), standardized root mean
square residuals or SRMR (Hu & Bentler, 1999), Revelle and
Rocklin's (1979) very simple structure (VSS) and Horn's (1965)
parallel analysis (PA).

Empirical BIC is an information theoretical assessment of fit that
evaluates the parsimony of any model (Schwarz, 1978). A solution
with more components/factors will very often have a better abso-
lute fit, but the BIC applies a penalty based on the number of pa-
rameters. Therefore, models with the lowest BIC are preferred.
Because solutions with more components/factors have more pa-
rameters, BIC measures are an effective statistic for comparing
many models. BIC is widely used in model building across different
fields and is a superior statistic among information theory mea-
sures (Posada, Buckley, & Thorne, 2004). In simulations, BIC iden-
tifies the correct number of factors more than 60% of the time
(Ruscio & Roche, 2012).

SRMR is the square root of the difference between a sample's
covariance matrix and the proposed model's covariance matrix
(Hooper, Coughlan, & Mullen, 2008). SRMR is representative of
measures typically used in confirmatory factor analysis and is
biased towards overextraction; however, the greater the number of
parameters in the model and the larger the sample size, the lower
SRMR tends to be (Hu& Bentler, 1999). Lower values are better; any
value above 0.1 is considered unacceptable. To the best of our
knowledge, SRMR has not been compared to alternative modern
methods in simulation studies (Courtney, 2013).

VSS examines how well the individual components/factors fit
within many solutions, where each progressive solution has one
more factor than the last (Revelle & Rocklin, 1979). VSS can be used
in an entirely objective fashion, by finding maxima, but it can be
viewed subjectively as well, like a scree plot. However, VSS is best at
identifying simple structures (i.e. those with a single level of fac-
tors) and therefore it is probably not appropriate if the ‘true’
structure of the data includesmore than two factors (Revelle, 2015).
To the best of our knowledge, VSS has not been compared to
alternative modern methods in simulation studies (Courtney,
2013).

PA is based on generating random eigenvalues that ‘parallel’ the
observed data in terms of sample size and the number of variables
(Zwick & Velicer, 1986). A component/factor is retained if its
eigenvalue is greater than the 95th percentile of the distribution of
eigenvalues generated from the random data (Horn, 1965). This
technique improves uponmost other methods, both subjective (e.g.
scree test) and objective (e.g. empirical BIC, Complexity), by taking
sampling error into account, which is not partitioned from total
variance in other methods (Horn, 1965). PA is not arbitrary: the
‘parallel’ data it generates can be resampled from the empirical data
themselves, and the technique is robust. Both resampled and
simulated parallel data do not yield substantively different results
(Revelle, 2015). Moreover, PA is flexible, having been modified and
improved upon since its conception, and is capable of assessing
factor and component structures, as well as both ratio and ordinal
data (Garrido, Abad, & Ponsoda, 2013). Finally, PA is noteworthy
when contrasted with other, modern factor number tests because
unlike even the best alternatives, e.g. comparison data (Ruscio &
Roche, 2012), it is completely unbiased (cf. Courtney, 2013). Based
on simulations, PA identifies the correct number of factors in more
than 76% of cases (Ruscio& Roche, 2012). For this reason, it remains
one of the best tests available for component/factor extraction.

All methods of course have their drawbacks (Ruscio & Roche,
2012); there is no ‘one size fits’ all approach. Even if some
methods are demonstrably more accurate than others, e.g. PA
versus Kaiser's criterion, few data sets will produce an immediate
and clear solution. Therefore, it is paramount that no single auto-
mated extraction test be used as the sole method to determine how
many components/factors to extract from a data reduction analysis.
Instead, multiple automated tests should be implemented and
compared. If multiple tests agree on the same number of compo-
nents/factors to extract, then researchers can be confident with
their decisions about extraction (Gorsuch, 1983).

WHAT IF MULTIPLE AUTOMATED METHODS DISAGREE?

It is not uncommon for multiple automated methods to disagree
on the number of components to extract. As previously noted, in
such cases a scree test may be used as a quick and easy ‘tie-breaker’
if the plot reveals a clear and distinct drop in the eigenvalues past a
certain component/factor. Such instances, however, are becoming
increasingly rare as automatedmethods are improved upon.Where
appropriate, researchers should use PA as a tie-breaker because it is
a robust technique, but we again caution readers to consider as
many options as possible before settling on a particular selection of
factors. For example, other sophisticated analyses such as Everett's
tests may be required to determine which model to use for sub-
sequent analyses after extracting multiple solutions with differing
numbers of factors (Everett, 1983).

Researchers should always keep in mind the theory theywish to
test, and where theory is well established, it can be used to guide
choices in how many factors to extract. If the analysis is wholly
exploratory, or theories are at odds, there is nothing wrong with
extracting multiple factor structures and comparing them when
multiple extraction methods disagree on how many to extract.
Factor interpretability can be assessed after extraction, and,
depending on what variables are of interest, investigating addi-
tional associations may indicate which structure is the most useful
(Altschul, Terrace, & Weiss, 2016). As with any model, however,
researchers must beware of post hoc modification since greater
degrees of freedom can hinder the generalizability of an analysis.
Ideally, researchers should always keep their theory in mind
throughout the analytical process, and factor solutions that are
extracted should be interpretable in light of theory.

Finally, basic EFA or PCA may not be the best method for all
situations. More complex and potentially hierarchical data may
require a more advanced modelling approach. For example, EFA is
itself a specific implementation of a more general SEM framework,
which allows users to specify latent variables and all paths between
latent and measured variables. If one suspects that a one-level
factor model is not sufficient to explain the data, for example if
there are unambiguous sources of nonindependence such as
correlated error structure, then SEM should be considered because
it is better suited for handling complex structures (Reise, Schneines,
Widaman, & Haviland, 2013).
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eigenvalues. The horizontal black line at 1 represents Kaiser's criterion.

F. B. Morton, D. Altschul / Animal Behaviour 149 (2019) 89e95 93
Ultimately, researchers need to be aware of what EFA and PCA
are creating: reduced data that are only the result of what one has
fed into one's analysis. Variable reduction may make data more
manageable and possibly more interpretable, but the results are
derived from noninferential matrices of correlations between var-
iables, and there is no guarantee that these techniques will produce
quantitatively superior data. The results of data reduction are
contingent on the input; some data will be appropriate for data
reduction, some simply will not. Moreover, similar but distinct data
will yield different results. Comparing different data sets in the
same or similar models is fundamentally qualitative, and re-
searchers must bear this in mind when considering what to
conclude from their analyses.

PERFORMING AND INTERPRETING AUTOMATED EXTRACTION
TESTS IN R

The following instructions are specific to the R programming
language because of its wide use and robust, well-maintained
feature set. All commands are available from base R, or the
‘psych’ package (Revelle, 2015). The code for running these analyses
can be found in the Supplementary Material.

First, data should be organized in a ‘data.frame’ format, which is
native to R. We will call our example data.frame: ‘df’. The first
column of the data.frame should contain the names of individuals
and/or dyads. Many functions require only numerical input, and the
first column can be subset out of the data.frame with the command
‘df[,-1]’. For example, to examine the correlation matrix of the data
for suitability, the entire command ‘cor(df[,-1])’ will display the
numeric correlation matrix. We also suggest using ‘corPlot’ in the
same way, to view the correlation matrix graphically. Two specific
tests for factorability, Bartlett's test and the Kaiser-Meyer-Olkin
measure, can be found in psych and accessed using ‘cortest.bar-
tlett(df[-1])’ and ‘KMO(df[-1])’.

Executing the command ‘nfactors(df[,-1])’will display graphical
representations of VSS, eBIC and SRMR (e.g. Fig. 2). It will also
generate a myriad of other fitted statistics, which may be useful to
the advanced user. Executing ‘fa.parallel(df[,-1])’will display a plot,
as in Fig. 3, as well as give a specific recommendation for howmany
components to retain for extraction.

As previously mentioned, EFA and PCA often produce very
similar solutions in practice, but the underlying matrix algebra
differs such that when each procedure is repeated, the results can
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two-factor solution, (2) the SRMR test indicates that this decision is
acceptable, and (3) the scree plot (i.e. our ‘tie-breaker’) corroborates
this decision.
SUMMARY AND FUTURE DIRECTIONS

Data reduction analyses provide a unique and objective means
through which researchers can interpret animal data, and the work
that has already been done in this area has taken a very important
step in that direction. With the increasing number of studies using
this approach, researchers must take into careful consideration
both the data reduction technique (PCA or FA) and the extraction
method(s) used to reduce the number of components/factors
within their data set. Failure to do this can have consequences in
terms of comparability, replicability and interpretation of those
results. In light of the well-known deficiencies associated with
Kaiser's criterion, we emphasize that animal researchers must
refrain from using this technique in future work and instead use
more robust and automated extraction techniques (e.g. PA, empir-
ical BIC, VSS, comparison data). If these automated tests recom-
mend the same number of components/factors, then researchers
can be confident about their decisions to extract. If they disagree,
then as we discussed, there are multiple avenues to take to aid
decision making on extraction and modelling frameworks. Avoid-
ing Kaiser's criterion and supplementing scree tests with more
robust and automated tests will greatly improve the utility and
reliability of data reduction techniques, particularly for compari-
sons across studies. Of the methods we have discussed, we
recommend PA and BIC in particular because of their strong per-
formance under simulation (Ruscio & Roche, 2012), but novel
methods are being developed with surprising frequency, and we
encourage readers to explore the literature for newly verified
methods.
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