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Social dynamics are of fundamental importance in animal societies. Studies on nonhuman animal social
systems often aggregate social interaction event data into a single network within a particular time
frame. Analysis of the resulting network can provide a useful insight into the overall extent of interaction.
However, through aggregation, information is lost about the order in which interactions occurred, and
hence the sequences of actions over time. Many research hypotheses relate directly to the sequence of
actions, such as the recency or rate of action, rather than to their overall volume or presence. Here, we
demonstrate how the temporal structure of social interaction sequences can be quantified from dis-
aggregated event data using the relational event model (REM). We first outline the REM, explaining why
it is different from other models for longitudinal data, and how it can be used to model sequences of
events unfolding in a network. We then discuss a case study on the European jackdaw, Corvus monedula,
in which temporal patterns of persistence and reciprocity of action are of interest, and present and
discuss the results of a REM analysis of these data. One of the strengths of a REM analysis is its ability to
take into account different ways in which data are collected. Having explained how to take into account
the way in which the data were collected for the jackdaw study, we briefly discuss the application of the
model to other studies. We provide details of how the models may be fitted in the R statistical software
environment and outline some recent extensions to the REM framework.
© 2015 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
The application of social network analysis to nonhuman animal
societies has attracted a great deal of interest over the last decade
(Croft, James, & Krause, 2008; Sih, Hanser, & McHugh, 2009; Wey,
Blumstein, Shen, & Jord�an, 2008; Whitehead, 2008). Who interacts
with whom and the local (for example, cliques in the network) and
global (overall) network structures that these interactions produce
are of central importance for key issues in ecology and evolution
(Krause, Croft, & James, 2007). There is great interest in linking
observed patterns in animal social networks to such processes to
understand, for example, how disease is transmitted within a
population or how cooperation is maintained (Croft et al., 2008; Sih
et al., 2009; Wey et al., 2008). To date, however, researchers have
tended to aggregate data on social interactions over time into a
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single, static, network within a particular time frame (Croft et al.,
2008), even if the observations were originally made for individ-
ual, disaggregated, events (Faust & Skvoretz, 2002; Freeman,
Freeman, & Romney, 1992). Aggregate event network data indi-
cate which individuals interacted, and possibly how often. How-
ever, through aggregation, information is lost about the order in
which such interactions occurred, and hence the sequences or
patterns of actions over time. While some research questions relate
to the overall number, or the presence, of interactions between
individuals in a particular time frame, many questions relate
directly to the sequence of actions (Blonder, Wey, Dornhaus, James,
& Sih, 2012; Pinter-Wollman et al., 2013).

The importance of considering temporal dynamics in studies of
animal social networks has been highlighted by a number of recent
review papers (Blonder et al., 2012; Pinter-Wollman et al., 2013).
Several empirical studies have begun to consider the temporal
structure of animal social networks, particularly in the context of
evier Ltd. All rights reserved.
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information diffusion and disease transmission (Blonder &
Dornhaus, 2011). In these studies, the temporal patterns of social
interactions have clear consequences for the likelihood of an indi-
vidual gaining access to information, or being exposed to disease.
Other approaches to the study of temporal networks relate to the
development or stability of social relationships through time, for
example comparing the structure of time-aggregated networks
over different sampling periods (Croft et al., 2011; Hobson, Avery,&
Wright, 2013).

Analysis of the dynamics of social interaction is particularly
useful in addressing questions about social processes unfolding
between individuals within group settings, such as a dominance
hierarchy, reviewed in Stevens and Gilby (2004). An analysis of
disaggregated events would shed light on how that dominance
hierarchy came to be, possibly through persistence of winning
(Jennings, Carlin, & Gammell, 2009).

There is great value in applying statistical models, such as the
relational event model (REM) for social action (Butts, 2008), to
time-ordered animal social interaction data to test hypotheses that
relate to the ordering of events or actions within a sampling period
(Rendell & Gero, 2014). The REM was originally developed in the
social sciences by Butts (2008) to investigate the timing or order of
events in human interactions, such as conversations or communi-
cations. Here, we show how the REM can be applied to animal
social network data that are based on interactions (events) between
individual animals. We illustrate the application of the REM with a
case study.

Our aim here is thus to demonstrate the potential of the REM for
studying animal social behaviour as it unfolds in time. We explain
how the REM can be used to test explicit hypotheses about such
aspects of animal behaviour, while taking into account the way in
which the data were collected, and the possible actions that can
occur in the sequence of events. From a practical perspective, we
also explain how REMs can be fitted and the data prepared for
modelling using particular packages within the R statistical envi-
ronment (R Core Team, 2013).
THE REM AND OTHER APPROACHES FOR LONGITUDINAL AND
NETWORK ANALYSIS

The REM allows a comparison of patterns of actions through
time across different individuals in a network. We explain the
theoretical background to the REM in more detail in the
Methods.

The REM is distinct from other established models and methods
for longitudinal and network analysis, and the data requirements
are also different. Typical nonparametric sequence analysis treats
whole sequences as the units of analysis (Abbott, 1995). These
methods either wholly aggregate events, thus losing the temporal
aspects of the data, make comparisons about deviations across
average tendencies, or examine where common sequences are
conserved, such as in genomic sequence alignment (Mount, 2001).
The REM treats the events (microbehaviours) as the units of anal-
ysis and uses sufficient statistics (statistics that summarize the
values of the sample data without loss of information from the
sample) to model the event dynamics directly.

A group of n animals can be thought of as a network comprising
n individuals, whose actions relate to one another as a series of
(disaggregated) events. Actions may often be between pairs of in-
dividuals (dyads) in the network, although higher-order in-
teractions, such as triads, are also possible. Self-directed actions (for
example, self-grooming) may also occur; these are called loops in
network terms. Adapting an argument of Goffman (1967) to animal
behaviour, actions among animals over time can be seen as series of
discrete events where one animal directs its behaviour at one or
more of the other animals in its environment.

Each row of the disaggregated event data represents an event,
where an action takes place. The exact time of the event may also
be recorded. Covariate information, such as the sex of the focal
individual, is often available. Where several actions are possible for
a particular event, the action type may be known, and may be
treated as an event covariate, or modelled directly as a categorical
variable.

Other models for dynamic networks focus on aggregate
changes in the whole network structure over time. First, these
include temporal exponential random graph models (TERGMs;
Hanneke, Fu, & Xing, 2010), for which efficient and unbiased
estimation routines were first proposed by Desmarais and
Cranmer (2010, 2012), implemented in the xergm package for R
(Leifeld, Cranmer, & Desmarais, 2014). Second, these involve each
actor evaluating their utility for forming and dissolving ties (i.e.
stochastic actor oriented models (SAOMs) usually fitted with the
software SIENA (Snijders, 2005)). The minimal data for REM
involve only multiple observations of time-ordered events, and
thus have much less specific data requirements than sequence
analysis, which needs multiple observations of whole sequences,
or TERGMs and SAOMs, which require single complete network
data from at least two points in time. The family of models
employed by the REM framework is related to the event history
(or failure/survival/life table) analysis (Mills, 2011) in that each
potential action is assumed to have a piecewise constant hazard
(the rate of occurrence, given everything that has transpired up to
that point; Butts, 2008). As these statistics are hazards, they
directly estimate the rate of event occurrence. The REM frame-
work is thus a useful general tool for the analysis of social
behavioural processes that unfold in time.

The remainder of this article is structured as follows. In the
Methods, we provide a brief theoretical outline of the REM, and
explain how it may be fitted, as well as the necessary data prepa-
ration. In the case study section, we describe the specification and
results of a REM analysis of the jackdaw data. In the Discussion, we
draw conclusions on the results of our case study, and discuss how
the REM could be used in other studies of animal social behaviour
over time. We also briefly outline some extensions to the models
we present, and recent areas of development of the REM.

METHODS

Background

A detailed description of the REM can be found in Butts (2008),
where he derives two likelihoods for the model: one for interval
(exact-timed) event data and one for ordinal event data. Here we
outline themodel framework for the ordinal case; however, readers
should refer to Butts (2008), Marcum (2012) andMarcum and Butts
(2014) for details of other generalizations.

The definition of the REM begins with tuples for each action, a (a
tuple is a data structure consisting of multiple parts).

Define relational event tuples: a ¼ ði; j; k; tÞ, where:
i2S: is the ‘Sender’ of event a; sðaÞ ¼ i; S is the set of possible

senders.
j2<: is the ‘Receiver’ of event a; rðaÞ ¼ j; < is the set of possible

receivers.
k2C: is the ‘Action type’ (category) of event a; cðaÞ ¼ k; C is the

set of actions.
t2R: is the ‘Time of event’ the order in which the event tran-

spired, in study period R:
Then, under a piecewise constant latent hazard model, dy-

namics are governed by the rate function:
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where:
l(), l0: are rates; the latter is the baseline rate of action, which is

fixed at 0 at the beginning and end of the observation.
Xa: are covariates relating to the action; these could include

characteristics of the action and/or the animal.
At: is the sequence of past action.
u: is a vector of sufficient statistics.
q: are the REM model coefficients associated with u.
The likelihood of the REM, which is fully derived in Butts (2008)

and generalized to incorporate exogenous events in Marcum and
Butts (2014), follows a piecewise constant hazard under a
mixture of Poisson distributions. Current implementations support
a variety of estimation methods commonly used in generalized
linear models including: maximum likelihood, Markov Chain
Monte Carlo, Bayesian sampling importance resampling and
Bayesian method of posterior modes.
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Figure 1. (a) Animal A directs its actions to animals B or C; the observer (Obs) records
these actions as animal A sending behaviour. (b) Animals B or C direct their actions to
animal A; the observer records these actions as animal A receiving behaviour. (c)
Animals B and C interact; the observer is focusing on animal A, and hence does not
observe or record the actions of animals B and C.
Specifying and Fitting the REM

REMs can be fitted to data for which the exact time of an event is
available, for example events extracted from video data, or to or-
dered data, as in our case study. In the REM it is possible to estimate
coefficients for different kinds of behaviour, including sending,
receiving, reciprocity and persistence of action. It is also possible to
specify and fit REMs and investigate kinds of behaviour involving
different types of action, such as animal A grooming animal B,
followed by (or preceded by) B attacking A.

A typical starting point in the modelling process is to include
parameters for each individual in the network in the REM, allowing
each animal to have its own specific rate of sending and receiving
actions in the model, to test whether there is any evidence of dif-
ferential rates of sending and receiving actions. For a network of n
animals there are potentially n specific rates of sending and n rates
of receiving actions. When we set up the model using a particular
animal as the ‘reference animal’, significant positive coefficients for
any other animals in the network indicate higher rates of sending or
receiving a particular action than for the reference animal. Signif-
icant negative coefficients indicate the converse, and nonsignificant
coefficients indicate they can be thought of as similar to the refer-
ence animal with respect to sending or receiving actions.

Allowing for specific sending and receiving of actions in the REM
makes the model valuable for estimating specific effects for each
animal, but typically requires many model parameters. Setting up
the REM with a reference animal requires 2 � (n � 1) parameters
for the fixed effects for sending and for receiving actions; for large
networks and/or short sequences, this potentially large number of
model parameters should be considered in terms of model
complexity given the available data. It may be possible to reduce
the number of model parameters to common sending and receiving
effects, as detailed in Butts (2010). When comparing fitted REMs,
we use the Bayesian information criterion (BIC) to assess their
relative goodness of fit and additionally report pseudo-R2 measures
(these are based on one minus the ratio of the null and fitted
likelihoods).

REMs may be fitted in the statistical environment R (R Core
Team, 2013), using the package relevent (Butts, 2010). Within this
package, there are two modelling commands: rem(...) and
rem.dyad(...). The function rem(...) is a more general command for
modelling with considerable flexibility for specifying multiple ac-
tion types, loops, and allowing for different study designs through
the use of event support constraints. The egocentric relational
event model may be fitted with rem(...) and is used for the case
study analysis. Use of the rem(...) command in relevent generally
requires a fair amount of data preparation prior tomodelling, which
can be achieved using the informR package (Marcum, 2012).
informR allows for a lot of flexibility in setting up the data for
identifying particular sequences in the relational event data, mak-
ing it invaluable for answering research questions about sequences
and recency of events in studies of behaviour. The other modelling
command in the relevent package is rem.dyad(…). This is much
more limited in its flexibility as a model command than rem(…),
but has the advantage of prepackaged summaries of event se-
quences, such as conversational dynamics (Gibson, 2003) and thus
it is very powerful for simple dyadic models.

The sampling used in the study design should be taken into
account in the modelling process. In many cases, focal sampling is
used, where the researcher observes an individual animal for a set
period of time, possibly at random, or possibly through opportunity
or convenience. This means the researcher only observed events
associated with the focal animal (Fig. 1). If we label the focal animal
as ‘A’ and two other animals, ‘B’ and ‘C’, and the researcher
(observer) as ‘Obs’, and use the example of grooming, the
researcher can see whether A grooms another animal, including B
or C (Fig.1a), or whether another animal, including B or C, grooms A
(Fig. 1b), but if B grooms C or vice versa this is not directly observed
by the researcher (Fig. 1c), even if such events occur. Therefore,
prior to modelling, we must set up the data such that only those
actions that could have been observed for any given event by the
researcher are considered in the possible set of actions, and exclude
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nonobservable actions. We do this using a set of support con-
straints, where a binary indicator system is used to evaluate and
restrict which actions are possible, or observable, at any given
moment in the event history. For example, an event that is
observable by the researcher at a particular point in the sequence is
associatedwith a support constraint value of 1 and a nonobservable
event is associated with a value of 0. Support constraints can be set
up in the informR package, as Marcum and Butts (2014) explain in
more detail.

The setting should also be taken into account via support con-
straints whenmodelling the relational event data. The setting is the
context in which observable events can occur given the study
design. In the case of food sharing, an animal cannot transfer a food
item if it does not have a food item to transfer at any givenmoment.
Moreover, if the animal eats a food item it has just found, it no
longer has this item to transfer. As a further example, if animals are
being focally sampled for their grooming behaviour in two separate
enclosures, animals in the first enclosure cannot groom animals in
the second enclosure, and vice versa.

CASE STUDY

Background

De Kort, Emery and Clayton (2006) studied a group of 12 Eu-
ropean jackdaws, which received 28 randomized feeding trials on
different days in 2003. These authors aggregated the events into
two static networks: the first for the time frame of the first half of
the study period (first 14 trials) and the second for the time frame
of the second half of the study period (trials 15e28). The birds were
all living in one large aviary, having been taken from several nests
after at least a week from hatching. The nestlings were hand-raised
until nutritional independence, and were grouped in four nest-
boxes. Individuals in the same nestbox were not necessarily sib-
lings. For the feeding trials, one bird at a time received 10morsels of
food consecutively, after which, a second bird received 10 morsels,
etc., until all birds had received the same treatment. The order in
which individuals received morsels was randomized before each
trial. For each trial, the morsels alternated between sweetcorn and
the larvae of the waxmoth, Galleria mellonella. Birds did not receive
these morsels outside the feeding trials. For each morsel provided
to a focal bird, it was recorded whether a bird ate the morsel,
transferred it to another bird, or dropped it on the floor, thus, for
equation (1), there are three categories of action for each morsel.
For each trial, exact-timing information is not available, but the
order of events is known.

Our research questions are as follows. Is there any evidence in
the observed disaggregated event data that persistence and reci-
procity of action aremore likely thanwewould expect by chance? If
so, what is the frequency of these events given past actions, and
how soon in the sequence are such actions repeated? How do these
actions relate to exogenous factors, such as sex and food type?
Other approaches for modelling animal interactions over time,
especially with time-aggregated datawill not allow us to answer all
of these questions, or will only provide partial answers. For
example, other methods do not allow us to assess how soon in the
sequence actions are repeated in a time-ordered sequence of
events.

The network in our case study is fairly small, 12 jackdaws,
although a long sequence of event data was collected, comprising
3168 events. The REM could also be used with much larger net-
works, where such data are available. We fitted REMs to these data
to test for persistence and reciprocity of action in terms of food
sharing among the network of birds. We also investigated whether
the patterns of action were different for two birds raised in the
same nestbox, compared with two birds, each from a different
nestbox. The order of observed events is of interest in this example
because the closeness or distance of food sharing events in the
sequence relates to whether the birds rely on memory to direct
their actions; events more distant in the sequence require longer
memory retention from the bird transferring the food. Corvids are
known to have excellent memory (Bednekoff, Balda, Kamil, & Hile,
1997). The number of times a persistent action from one bird to
another leads to a reciprocal food transfer can also be investigated
with the REM. Food sharing is of great interest to evolutionary
biologists, because it suggests the existence of altruism, or it re-
quires difficult-to-explain phenomena such as reciprocation and
temporal discounting (Stephens, McLinn, & Stevens, 2002). It is
also of interest to anthropologists because food sharing is often
regarded as being fundamental to the evolution of complex
cognition in many animal species, including humans (de Waal,
1996). In our case study, the animals are in captivity. While in
this environment, their behaviour may differ from animals in the
wild. However, food sharing is part of the animals' natural
behaviour repertoire.

Specifying and Fitting the REM

De Kort et al. (2006) analysed their two static networks of
aggregate events with descriptive measures such as frequencies of
transfer, and with permutation tests, such as the tauKr statistic
(Hemelrijk, 1990). These authors found that jackdaws shared food
with more than one other individual, and a high percentage (26%)
was initiated by the donor, especially compared with primates,
where active giving is exceedingly rare (de Kort, Emery, & Clayton,
2003, 2006). Furthermore, the frequency of food sharing and the
number of recipients were both reduced in the second time frame,
compared with the first (von Bayern, de Kort, Clayton, & Emery,
2007). While the results of their aggregated analysis answer
particular questions about the overall food sharing behaviour of the
birds for a particular time period, other questions, such as those on
the recency of reciprocal action, or the rate of persistent action, can
be answered via an analysis of the disaggregated event data with
the REM. The egocentric REM can be used to test for differential
food sharing behaviour among the birds.

In our REMs, we follow the path of each morsel as it enters the
system until it leaves the system, i.e. it is eaten or dropped by a
particular bird. We treat the introduction of morsels to particular
birds in each trial as exogenous events, randomized by trial and
bird, and assume that these initiate event histories.

Once a bird receives a morsel, it may be eaten by the initial
receiver, it may be dropped on the floor or it may be transferred to
another bird. Here, we treat the latter action type as a ‘food
transfer’. Because we have the order of events but not the exact
timing, we use an ordinal likelihood with multiple action types, to
reflect the three possible actions for each morsel.

We used informR in R to prepare the data for the REM analysis,
introducing support constraints to take into account the bird that
is offered the food item in each trial; only the bird that is offered
the morsel can immediately eat it, and the item can only be
dropped on the floor initially by the bird being offered the morsel.
The support constraints ensure that the model estimates are only
based on the subset of events that are possible at any particular
time. The general use of support constraints in REMs is discussed
in more detail in Marcum and Butts (2014). Furthermore, we
incorporate exogenous events between the initiation and termi-
nation of each trial to take into account that trials took place on
different days.

We explore four types of behavioural effects here, using the
REM:
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(1) whether each individual bird has its own specific rate of
transferring food;

(2) whether nestbox homophily (familiarity of birds from the
same nestbox) is associated with particular food sharing behaviour;

(3) reciprocity and persistence of food sharing: how quickly
these actions occur, or are repeated in the sequence of events;

(4) whether food-sharing behaviour is different for the two
different food types.

In Model 1 (M1), 13 fixed effects were fitted to compare the
relative tendency for a bird to initially eat the morsel rather than
transferring it or dropping it on the floor. Because there are 12 birds,
each of which has an opportunity to eat, share or drop a morsel
during the various trials, 12 of the fixed effects are for the birds
(B1-B12) to transfer the morsel, and the 13th is for dropping the
morsel on the floor. Eating the morsel is the reference category.
Positive coefficients would suggest that the bird is more likely to
transfer the morsel (or drop it on floor) than to eat it. Negative
coefficients indicate that the bird is likely to immediately eat the
morsel rather than give it away or drop it.

Some birds were raised in the same nestbox. Model 2 (M2)
extends M1 to include a nestbox homophily term that compares
the likelihood of an exchange between any two birds raised in
the same nestbox to any two birds not raised in the same
nestbox. A positive coefficient here indicates greater within-
nestbox homophily than between-nestbox heterophily in terms
Table 1
Relational event model results for jackdaw food sharing

Estimate M1 M2

B SD SL B SD

B1 �4.128 0.161 *** �4.340 0.166
B2 �4.976 0.243 *** �5.205 0.247
B3 �3.854 0.141 *** �4.061 0.146
B4 �4.460 0.190 *** �4.893 0.201
B5 �5.393 0.302 *** �5.680 0.306
B6 �4.567 0.201 *** �4.850 0.206
B7 �3.983 0.150 *** �4.268 0.158
B8 �5.637 0.334 *** �5.957 0.338
B9 �3.817 0.139 *** �4.247 0.155
B10 �5.304 0.289 *** �5.738 0.297
B11 �5.062 0.259 *** �5.485 0.267
B12 �3.764 0.135 *** �4.195 0.150
floor �3.523 0.115 *** �3.523 0.115
hom 0.861 0.109
PoA
recip
recenXrecip
B1.Corn
B2.Corn
B3.Corn
B4.Corn
B5.Corn
B6.Corn
B7.Corn
B8.Corn
B9.Corn
B10.Corn
B11.Corn
B12.Corn
floor.Corn
hom.Corn
PoA.Corn
recip.Corn
recenXrecip.Corn
BIC 4656.627 4604.662
Pseudo�R2 0.712 0.717

M1eM4 aremodels 1e 4. The SD are standard deviations about the posterior modes. Sign
with a Z statistic. Thus ** and *** refer to significance levels of approximately 1% and 0.1
of food sharing behaviour. In Model 3 (M3) we investigate
persistence of action and reciprocity by adding three statistics to
the model. The first, PoA, measures persistence of action with
respect to food sharing. The second models the tendency for
reciprocity to occur at any time during the event history. The
third models the tendency for reciprocity to occur more or less
recently in event history, given that a reciprocal encounter has
been initiated.

De Kort et al. (2006) found evidence of differential behaviour
when sharing wax moth larvae, compared with sweetcorn; in
particular, they found that wax moth larvae were more likely to be
shared by the birds. Hence in M4, we add covariate terms that
differentiate betweenwhether the focal morsel was sweetcorn or a
wax moth larva, although we introduce the food types as interac-
tion terms for the different birds in our example to investigate
whether there is differential preference for food type among the 12
birds; an alternative way to model this difference overall would be
to simply add a corn covariate as a main effect.

REM Results

Throughout the study period, the jackdaws transferred 11.1% of
food items to one another. We initially included the sex of the bird
as an exogenous covariate in the REM, and the results suggested
that jackdaws did not share more food between the sexes than
within them, but this is probably a result of a biased sex ratio in
M3 M4

SL B SD SL B SD SL

*** �6.799 0.236 *** �5.998 0.253 ***
*** �6.529 0.313 *** �5.510 0.344 ***
*** �5.501 0.262 *** �4.484 0.285 ***
*** �6.822 0.286 *** �5.780 0.301 ***
*** �7.391 0.360 *** �6.748 0.449 ***
*** �6.693 0.275 *** �5.887 0.314 ***
*** �5.857 0.252 *** �4.828 0.272 ***
*** �7.463 0.364 *** �6.326 0.367 ***
*** �4.832 0.400 *** �3.538 0.429 ***
*** �7.135 0.323 *** �6.396 0.385 ***
*** �7.519 0.380 *** �6.821 0.471 ***
*** �7.323 0.349 *** �6.269 0.367 ***
*** �6.540 0.217 *** �5.596 0.221 ***
*** 0.228 0.156 0.157 0.178

2.261 0.121 *** 1.984 0.124 ***
�0.397 0.239 �0.550 0.283
0.003 <0.001 *** 0.004 0.001 ***

�2.849 0.668 ***
�3.647 0.850 ***
�3.531 0.676 ***
�3.936 0.914 ***
�2.208 0.810 **
�2.760 0.702 ***
�3.503 0.654 ***

�10.522 26.398
�5.359 1.273 ***
�2.451 0.743 ***
�2.514 0.898 **
�3.951 1.134 ***

�11.177 25.681
0.286 0.381
1.107 0.377 **
0.435 0.553

�0.003 0.001 ***
2805.765 2809.678

0.832 0.841

ificance level (SL): asterisks are asymptotically equivalent to probabilities associated
%, respectively.
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these data: there are 10male birds and only two females. Therefore,
we do not have enough power in our data to detect sex differences
and so we did not consider the sex of the birds further in these
analyses.

In Table 1, the negative fixed-effect coefficients from M1 sug-
gest that all 12 birds prefer to eat the morsel, rather than to
transfer or drop it. However, as the result for the estimate of the
nestbox homophily term (hom) in M2 shows, two jackdaws raised
in the same nestbox are more than twice as likely to share food
with one another than two jackdaws from different nestboxes; the
hazard (relative rate) of sharing for two birds from the same
nestbox is multiplied by e0.8614 ¼ 2.37, all other things being equal.
M3 provides evidence that strong persistence of action is involved
in the feeding process, as shown by the estimate of PoA. The
hazard that a bird will repeat whatever it just did is multiplied by
e2.26; a roughly 10-fold increase, net of the baseline hazards of
occurrence. As a corollary, there is very little evidence of reci-
procity as the estimate of recip indicates. However, when reci-
procity does occur, it is more likely to happen immediately than
further along in the chain of events, as the positive recency co-
efficient estimate for recenXrecip suggests. The nestbox homo-
phily effect for hom disappears in the presence of persistence and
recency effects in M3, suggesting that there is an interaction be-
tween these terms, and that reciprocity is confined to birds from
the same nestbox.

The results for M4, in which food types are compared, suggest
that wax moth larvae are particularly valued as a social commodity.
Jackdaws are more likely to immediately share wax moth larvae
than sweetcorn, and more likely to eat sweetcorn than wax moth
larvae, as the negative fixed effects coefficients for sweetcorn (the
terms with .Corn in the name) suggest; the latter finding is
consistent with the findings of de Kort et al. (2006). Having
sweetcorn also drives birds to persist in their actions to a greater
extent, and in the rare occurrence of reciprocity, that type of ex-
change tends to happen later in the event history than those
involving sharingwaxmoth larvae.We conclude this because of the
negative recenXrecip.Corn coefficient. That is, wax moth larvae are
more likely to be shared, and exchanges are more likely to be
quickly reciprocated than those involving the transfer of sweetcorn.
Statistically, M3 has the best fit to the data, although M4 has a
comparable BIC value to M3 given that it includes 17 additional
parameters; both M3 and M4 have much smaller values of BIC than
the preceding models.

DISCUSSION

We have demonstrated the potential of the REM for modelling
the temporal structure of animal social interactions, allowing an
investigation of reciprocity and persistence of behaviour. We can
assess whether this repetition or reciprocation of action tends to
happen early in the sequence of events that follow the original
action, or later in the sequence. We have shown that the REM is a
flexible approach for studying social behaviour as it unfolds in time,
and how support constraints can be used to allow for the study
design and for the possible actions that can occur. We have
explained how these models can be fitted in the statistical
software R.

Having illustrated the application of the model with our case
study, we think that the REM will be more generally useful in
studies of animal social behaviour, where disaggregated event data
are available. When covariates can be incorporated into the model,
such as the sex and kinship of each animal, these allow hypotheses
involving homophily (similarity of characteristics) or heterophily
(difference) to be tested. Future work may also consider alternative
low-level social processes that may be at play here, such as how the
sequence of behavioural events is affected by the presence of a
predator at some point in the sequence.

One of the strengths of modelling with the REM is that the study
design and samplingmethod can be taken into account through the
support constraints, making it useful for a range of sample designs
and settings. For example, Morton et al. (2013) observed the
grooming behaviour of capuchin monkeys, Sapajus apella, in two
enclosures located in Edinburgh Zoo, U.K. (Macdonald & Whiten,
2011). They comprised an East group, with eight monkeys and a
West group, with 10 monkeys. These authors were interested in
whether monkeys reciprocated grooming, and persisted in their
grooming actions. Because they are in two separate enclosures,
monkeys from the East group cannot groom or be groomed by
animals in the West group. Focal sampling was used in the study
design, and one observer, who alternated between the East and
West enclosures, collected all the data. For full details of the study
design, see Morton et al. (2013). Rather than analyse the data for
each of these small networks separately for each enclosure, thus
reducing statistical power, a joint REM could be fitted that pools the
estimates from each focal monkey's event history. To take into ac-
count impossible actions between enclosures, individual and
enclosure-specific support constraints could be specified on the set
of possible observable actions at any given point in time. These
would disallow grooming from one enclosure to the next or
grooming of oneself, as possible actions. This would ensure that the
correct set of possible actions for each observed event was used in
the model estimation.

Although we did not focus on them in this paper, the REM has
the potential for modelling more complex dynamics in networks.
Perhaps the most important of these are Gibson's conversational
dynamics (Gibson, 2003, 2005). These were originally developed in
the area of (human) conversation as participation shifts (or p-
shifts), where, for example, the action of one individual A to
another B is followed by a group reaction, or by the interaction by
two other individuals in the group that are not A or B. In the context
of animal behaviour, and using grooming as an example, these p-
shifts would include such sequences of events as: A grooms B, B
subsequently grooms another animal in the network that is not A,
or A grooms B, and subsequently C grooms D. In Table 1 of Gibson
(2003), such p-shifts are listed in four categories of behaviour:
‘turn-receiving’, ‘turn-claiming’, ‘turn-usurping’, and ‘turn-
continuing’. These p-shifts can be modelled in the REM framework
via the relevent package in R (Butts, 2010), allowing more sophis-
ticated hypotheses about temporal dynamics of animal social net-
works to be tested.

We used a single-level version of the REM. A multilevel version
has recently been proposed (DuBois, Butts, McFarland, & Smyth,
2013). The multilevel version could be useful, for example, when
we have 10 or more groups (such as multiple enclosures) for which
we want to identify common patterns of action by modelling the
entire data set, for statistical efficiency. Such an approach would
allow each group to be identified for inference.

Another recent development in the general area of REMs is in
the stochastic blockmodeling of relational event dynamics (DuBois,
Butts, & Smyth, 2013). These authors develop approaches for
modelling the stochastic equivalence of nodes in static networks,
such as stochastic blockmodels (Nowicki & Snijders, 2001), to the
dynamic context. DuBois, Butts, and Smyth, (2013) use this
approach to identify latent clusters in the network in which there
are similar dynamics of network interaction. They show, through a
variety of empirical examples involving human network dynamics,
evidence of different numbers of latent clusters (K* in their termi-
nology), ranging from two to 10. We think such approaches could
be also valuable in identifying latent clusters in dynamic social
networks for animals.
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